

Brief information about the project

Name of the project	AP19679298 «Development of visible-driven
Time of the project	heterostructured TiO2 –based photocatalysts for air
	treatment»
Relevance	In this project we first propose to synthesize doped TiO2
	nanoparticles and TiO2-based heterostructures using the so-
	called Metal-Organic Frameworks (MOF)-templated
	synthesis approach (Ti-based MOFs used as sacrificial
	substrates).
Purpose	Develop scientific principles for efficient, scalable, and
	economic approaches to doped TiO2 nanoparticles and/or
	TiO2 based heterostructures that do not only absorb visible
	light ($\lambda > 400$ nm) but also have suitable bandgap (Eg < 3.3
	eV) to drive photocatalytic reactions.
Objectives	1) Syntheses of MOFs using titanium, manganese and/or iron
	compounds as precursors. Synthesis of TiO2 –based
	nanoparticles and heterostructures by thermolysis of
	synthesized MOFs.
	2) Evaluation of the photocatalytic properties of titanium-
	containing catalysts.
Expected and achieved results	1. New and facile methods will be developed allowing the
Expected and define ved results	preparation of doped-TiO2 or/and TiO2-based
	heterostructures using a bimetallic MOF-templated synthesis
	approach.
	2. The fundamental features in the mechanism of the
	photocatalytic activity of prepared nanoparticles will be
	determined.
	3. Scientific principles will be created for the development of
	new preparation methods (by the thermal decomposition of
	MOFs) of TiO2-based photocatalyst to further expand their
	applications in the environment remediation as paints/coating/plaster materials for air outdoor and indoor
	treatment.
Research team members with	Uralbekov Bolat
their identifiers (Scopus	ORCID: http://orcid.org/0000-0002-3245-4096
Author ID, Researcher ID,	Scopus Author ID: 36664090200
ORCID, if available) and links	ResearcherID:IRW-8210-2023
to relevant profiles	
•	Bolatov Asset
	ORCID: https://orcid.org/0000-0002-9677-2114
	Scopus Author ID: 56436739800
	ResearcherID: B-1258-2015
	Kenges Kairat
	ORCID: https://orcid.org/0000-0001-6408-6083
	Scopus Author ID: 57197734961
	ResearcherID: AAV-5793-2020

	Satybaldiyev, Bagdat
	ORCID: https://orcid.org/0000-0003-3434-7291
	Scopus Author ID: 55970118000
	ResearcherID:DOP-7533-2022
	Orazov Zhandos
	ORCID: https://orcid.org/0000-0002-6562-6093
	Scopus Author ID: 57226807984
List of publications with links	-
to them	
Patents	-

